The spread of unicyclic graphs with given size of maximum matchings

Xueliang Li* and Jianbin Zhang

Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, P.R. China E-mail: xueliangli@yahoo.com.cn

Bo Zhou

Department of Mathematics, South China Normal University, Guangzhou 510631, P.R. China

The spread s(G) of a graph G is defined as $s(G) = \max_{i,j} |\lambda_i - \lambda_j|$, where the maximum is taken over all pairs of eigenvalues of G. Let U(n, k) denote the set of all unicyclic graphs on n vertices with a maximum matching of cardinality k, and $U^*(n, k)$ the set of triangle-free graphs in U(n, k). In this paper, we determine the graphs with the largest and second largest spectral radius in $U^*(n, k)$, and the graph with the largest spread in U(n, k).

KEY WORDS: spread, unicyclic graph, characteristic polynomial, eigenvalue

AMS subject classification: 05C50, 15A42, 15A36

1. Introduction

All graphs G = (V, E) considered here are finite, undirected and simple. Let G be a graph with n vertices and A(G) the adjacency matrix of G. The characteristic polynomial of A(G) is $\phi(G, \lambda) = \det(\lambda I - A(G))$. The roots $\lambda_1(G), \lambda_2(G), \dots, \lambda_n(G)(\lambda_1(G) \ge \lambda_2(G) \ge \dots \ge \lambda_n(G))$ of $\phi(G, \lambda) = 0$ are called the eigenvalues of G. Since, A(G) is symmetric, all the eigenvalues of G are real.

The spread s(G) of a graph G is defined as $s(G) = \max_{i,j} |\lambda_i - \lambda_j|$, where the maximum is taken over all pairs of eigenvalues of G. The spread of G is also defined as $s(G) = \lambda_1 - \lambda_n$, where λ_1, λ_n are the largest and least eigenvalues of A(G), respectively. There have been some studies on the spread of an arbitrary matrix and a graph (see [9,11,12]).

Let U(n, k) denote the set of all unicyclic graphs on *n* vertices with a maximum matching of cardinality *k*, and $U^*(n, k)$ the set of triangle-free graphs

*Corresponding author.

in U(n, k). For a unicyclic graph G, let C(G) denote the unique cycle of G and g(G) the length of C(G).

Let $S_3^1(n, k)$ denote the graph on *n* vertices obtained from C_3 by attaching n - 2k + 1 pendant edges and k - 2 paths of length 2 to a vertex of C_3 , and $S_3^2(n, k)$ the graph on *n* vertices obtained from C_3 by attaching n - 2k + 1 pendant edges and k - 3 paths of length 2 to a vertex of C_3 , and one pendant edge to each of the other two vertices of C_3 . Let $S_3^3(n, k)$ denote the graph on *n* vertices obtained from C_3 by attaching n - 2k pendant edges and k - 2 paths of length 2 to a vertex of C_3 , and one pendant edge to each of the other two vertices of C_3 . Let $S_3^3(n, k)$ denote the graph on *n* vertices obtained from C_3 by attaching n - 2k pendant edges and k - 2 paths of length 2 to a vertex of C_3 , and one pendant edge to one of the other two vertices of C_3 (see figure 1).

Let $S_4^1(n, k)$ denote the graph on *n* vertices obtained from C_4 by attaching n - 2k + 1 pendant edges and k - 3 paths of length 2 to one vertex of C_4 , and one pendant edge to the adjacent vertex of C_4 . Let $S_4^2(n, k)$ denote the graph on *n* vertices obtained from C_4 by attaching n-2k pendant edges and k-2 paths of length 2 to one vertex of C_4 . Let $S_4^3(n, k)$ denote the graph obtained from $S_4^1(n-3, k)$ by attaching three pendant edges to the three vertices of degree 2 in C_4 . Let $S_4^4(n, k)$ denote the graph obtained from $S_4^1(n-1, k)$ by attaching one pendant edge to the vertex f (see figure 2).

In this paper, we show that $S_4^1(n,k)$, $S_4^2(n,k)(n \ge 2k)$ are the graphs with the largest and second largest spectral radius in $U^*(n,k)$, respectively, and $S_3^1(n,k)$ is the graph with the largest spread in U(n,k).

2. Graphs with the largest and second largest spectral radius in $U^*(n, k)$

Lemma 1 [2]. Let uv be an edge of G, then

$$\phi(G,\lambda) = \phi(G - uv,\lambda) - \phi(G - u - v,\lambda) - 2\sum_{C \in \mathcal{C}(uv)} \phi(G - C,\lambda),$$

where C(uv) is the set of cycles that containing uv; In particular, if uv is a pendant edge with the pendant vertex v, then

$$\phi(G,\lambda) = \lambda \phi(G-v,\lambda) - \phi(G-u-v,\lambda).$$

Figure 1. Graphs $S_3^1(n, k)$, $S_3^2(n, k)$ and $S_3^3(n, k)$.

Figure 2. Graphs $S_4^i(n, k)$ for i = 1, 2, 3, 4.

Lemma 2 [10, 13]. Let G_1 and G_2 be two graphs. If $\phi(G_1, \lambda) < \phi(G_2, \lambda)$ for all $\lambda \ge \lambda_1(G_2)$, then $\lambda(G_1) > \lambda_1(G_2)$.

Lemma 3 [10]. Let G be a connected graph, and let G' be a proper spanning subgraph of G. Then

$$\phi(G', \lambda) > \phi(G, \lambda)$$
 for all $\lambda \ge \lambda_1(G)$.

Furthermore, we have $\lambda_1(G) > \lambda_1(G')$.

Unicyclic graphs are also viewed as planting some trees at vertices of the unique cycle of G. So, we can view the vertices r_i (i = 1, ..., g) of $C_{g(G)}$ as roots, and T_i as planting tree at r_i ($r_i \in T_i$).

Let $G \in U^*(2k, k)$. If $v \in V(T_i)$ is a vertex furthest from the root r_i , and the distance is less than 2, then v is a pendant vertex. Let u be the vertex adjacent to v. Then d(u) = 2. Otherwise, G has no perfect matching. We define a transformation (F): deleting the other edge that incident to u and adding an edge $r_i u$. Carry out transformation (F) to T_i repeatedly, we can obtain the graph G' such that only some paths of length 2 and at most one edge are attached to r_i .

Lemma 4 [1]. Let $G \in U^*(2k, k)$, G' be the graph as above. Then $G' \in U^*(2k, k)$ and

 $\phi(G, \lambda) > \phi(G', \lambda)$ for all $\lambda \ge \lambda_1(G)$.

In particular, $\lambda_1(G') > \lambda_1(G)$

If we apply transform (F) to all planting trees $T_i(i = 1, 2, ..., g(G))$ of G repeatedly, we can finally obtain a graph G'' such that for any vertex w of C(G''), there are only some paths of length 2 and at most one pendant vertex that are attached to w.

Lemma 5 [7]. Let u and v be two vertices in a non-trivial connected graph G, and suppose that s paths of length 2 are attached to G at u, and t paths of length 2 are attached to G at v to form a graph $G_{s,t}$. Then either

$$\lambda_1(G_{s+i,t-i}) > \lambda_1(G_{s,t}) \ (1 \le i \le t) \quad or$$

$$\lambda_1(G_{s-i,t+i}) > \lambda_1(G_{s,t}) \ (1 \le i \le s).$$

Apply lemmas 4 and 5, we can get a graph H in U(2k, k) such that all paths of length 2 are attached to one vertex of C(H), other vertices are pendant ones, and just one of those is joining to one vertex of C(H).

Lemma 6 [1]. Let $G_i, G'_i (i = 1, 2, 3)$ be the graphs shown in figure 3. Then

$$\phi(G_i, \lambda) > \phi(G'_i, \lambda)$$
 for all $\lambda \ge \lambda(G_i)$

In particular, we have $\lambda_1(G_i) < \lambda_1(G'_i)$ for i = 1, 2, 3, respectively.

By lemmas 3 and 4, by a series of transforms, we can obtain a graph $G^* \in U^*(2k, k)$ such that $g(G^*) = 4$, a vertex of C_4 is attached by some paths of length 2 and at most one pendant edge, and other vertices of C_4 are attached by at most one pendant edge. Thus G^* must be a graph of figure 2.

Figure 3. Graphs G_i and G'_i for i = 1, 2, 3.

Lemma 7.

$$\begin{split} &\varphi(S_4^1(2k,k),\lambda) < \varphi(S_4^2(2k,k),\lambda) \quad \text{for all } \lambda \ge \lambda(S_4^2(2k,k)), \\ &\varphi(S_4^2(2k,k),\lambda) < \varphi(S_4^3(2k,k),\lambda) \quad \text{for all } \lambda \ge \lambda(S_4^3(2k,k)), \\ &\varphi(S_4^3(2k,k),\lambda) < \varphi(S_4^4(2k,k),\lambda) \quad \text{for all } \lambda \ge \lambda(S_4^4(2k,k)). \end{split}$$

In particular, $\lambda_1(S_4^1(2k,k)) > \lambda_1(S_4^2(2k,k)) > \lambda_1(S_4^3(2k,k)) > \lambda_1(S_4^4(2k,k)).$

Proof. Let e = fc, e' = pq as shown in figure 2. Delete e, e' from $S_4^1(2k, k)$, $S_4^2(2k, k)$, respectively. By lemma 1, we have

$$\begin{split} \phi(S_4^1(2k,k),\lambda) &= \phi(S_4^1(2k,k) - fc,\lambda) - \phi(S_4^1(2k,k) - f - c,\lambda) \\ &- 2\phi(2K_1 \cup (k-3)K_2,\lambda) \\ \phi(S_4^2(2k,k),\lambda) &= \phi(S_4^2(2k,k) - pq,\lambda) - \phi(S_4^2(2k,k) - p - q,\lambda) \\ &- 2\phi((k-2)K_2,\lambda) \end{split}$$

Obviously, $\phi(S_4^1(2k, k), \lambda) < \phi(S_4^2(2k, k), \lambda)$ for all $\lambda \ge \lambda_1(S_4^2(2k, k))$, since $S_4^1(2k, k) - f - c, 2K_1 \cup (k - 3)K_2$ are subgraphs of $S_4^2(2k, k) - p - q, (k - 2)K_2$, respectively, and $S_4^1(2k, k) - fc \cong S_4^2(2k, k) - pq$. By lemma 2, we have $\lambda(S_4^1(2k, k)) > \lambda_1(S_4^2(2k, k))$. Similarly, we can obtain

$$\begin{split} &\phi(S_4^2(2k,k),\lambda) < \phi(S_4^3(2k,k),\lambda) \quad \text{for all } \lambda \ge \lambda(S_4^3(2k,k)) \\ &\phi(S_4^3(2k,k),\lambda) < \phi(S_4^4(2k,k),\lambda) \quad \text{for all } \lambda \ge \lambda(S_4^4(2k,k)). \end{split}$$

Furthermore, we have $\lambda_1(S_4^2(2k, k)) > \lambda_1(S_4^3(2k, k)) > \lambda_1(S_4^4(2k, k)).$

In order to describe our results better, we first give the following lemma.

Lemma 8. Let $G \in U^*(2k, k)$, $G \ncong S_4^1(2k, k)$, $S_4^2(2k, k)$, $v \in V(C(G))$. If there exists a path $P = vv_1v_2$ of length 2 attached to v and $G - v_1 - v_2 \ncong S_4^1(2k - 2, k - 1)$, then

$$\phi(G, \lambda) > \phi(S_4^2(2k, k), \lambda)$$
 for all $\lambda \ge \lambda_1(G)$.

Proof. By induction on k. By lemma 1, we have

$$\begin{split} \phi(G,\lambda) &= \phi(G - vv_1,\lambda) - \phi(G - v - v_1,\lambda) \\ \phi(S_4^2(2k,k),\lambda) &= (\lambda^2 - 1)\phi(S_4^2(2k - 2, k - 1),\lambda) - \phi(P_3 \cup P_1 \cup (k - 3)P_2,\lambda) \end{split}$$

Let $G - vv_1 = G' \cup v_1v_2$. Then, $G' \in U^*(2(k-1), k-1)$, and $\phi(G, \lambda) = (\lambda^2 - 1) \phi(G', \lambda)$. By induction hypothesis, we have

$$(\lambda^2 - 1)\phi(S_4^2(2(k-1), k-1) \leq (\lambda^2 - 1)\phi(G', \lambda) \text{ for } \lambda \geq \lambda_1(G).$$

If there is no pendant vertex adjacent to v, then $P_3 \cup P_1 \cup (k-3)P_2$ is subgraph of $G - v - v_1$. Using the result above and lemmas 2 and 3, we can obtain the result.

If there exists a pendant vertex adjacent to v, then $P_4 \cup 2P_1 \cup (k-4)P_2$ is a subgraph of $G - v - v_1$. For $\lambda > \lambda_1(G)$,

$$\begin{split} \phi(P_3 \cup P_1 \cup (k-3)P_2, \lambda) &- \phi(P_4 \cup 2P_1 \cup (k-4)P_2, \lambda) \\ &= \lambda^2 (\lambda^2 - 2)(\lambda^2 - 1)^{k-3} - \lambda^2 (\lambda^4 - 3\lambda^2 + 1)(\lambda^2 - 1)^{k-4} \\ &= \lambda^2 (\lambda^2 - 1)^{k-4} > 0. \end{split}$$

Similarly, the result follows.

Lemma 9. Let $G \in U^*(2k, k)$, and $G \ncong S_4^1(2k, k)$ or $S_4^2(2k, k)$. Then

$$\phi(S_4^2(2k,k),\lambda) < \phi(G,\lambda) \text{ for all } \lambda \ge \lambda_1(G).$$

In particular, $\lambda_1(S_4^2(2k, k)) > \lambda_1(G)$.

Proof. It is trivial for k = 2. From the tables of [3,4], we can obtain the result for k = 3, 4. Suppose, now $k \ge 5$. If G is finally transformed into one of the graphs $S_4^2(2k, k)$, $S_4^3(2k, k)$ or $S_4^4(2k, k)$, then by lemmas 5, 6, 7, and 8, the lemma holds. If G is transformed into $S_4^1(2k, k)$, let G' be transformed into $S_4^1(2k, k)$ at the last step, then g(G') = 4 or g(G') = 5.

If g(G') = 5, then G' satisfies the condition of lemma 8. By lemmas 5, 6, and 7, we can obtain the result.

If g(G') = 4, then either G' satisfies the condition of lemma 8 or G' is the graph obtained from $S_4^1(8, 4)$ by attaching a path of length 2 to a vertex of planting subtree P_3 or a vertex of degree 3 in C_4 . We can obtain the result by simple computation and lemmas 5,6,7, and 8.

Applying lemmas 7 and 9, we can obtain

Lemma 10. Let $G \in U^*(2k, k)$, and $G \ncong S_4^1(2k, k)$, then

$$\phi(S^1_{\mathcal{A}}(2k,k),\lambda) < \phi(G,\lambda) \text{ for all } \lambda \ge \lambda_1(G).$$

In particular, $\lambda_1(S_4^1(2k, k)) > \lambda_1(G)$.

Lemma 11 [14]. Let $G \in U(n, k)$, $G \not\cong C_n$ (n > 2k). Then there is a maximal matching M and a pendant vertex v such that M does not meet v.

Theorem 12. $S_4^1(n,k)$ is the graph with the maximal spectral radius in $U^*(n,k)$.

Proof. By induction on n. The result holds for n = 2k by lemma 7. Suppose, that it is true for $n \leq m - 1$. Let n = m (m > 2k). There exists a pendant edge e that does not belong to a maximal matching M of G. Let e = wr with pendant vertex r. By lemma 1, we have

$$\begin{split} \phi(S_4^1(n,k),\lambda) &= \lambda \phi(S_4^1(n-1,k),\lambda) - \phi(P_4 \cup (n-2k)K_1 \cup (k-3)K_2,\lambda), \\ \phi(G,\lambda) &= \lambda \phi(G-r,\lambda) - \phi(G-w-r,\lambda), \end{split}$$

where $G \in U^*(n,k)$, $G \ncong S_4^1(n,k)$, $S_4^2(n,k)$. By induction hypothesis, we have $\phi(S_4^1(n-1,k),\lambda) < \phi(G-r,\lambda)$ for $\lambda > \lambda_1(G-r)$.

It suffices to prove $\phi(P_4 \cup (n-2k)K_1 \cup (k-3)K_2, \lambda) > \phi(G-w-r, \lambda)$ for $\lambda > \lambda_1(G)$. Since, any maximal matching M of G that misses r must meet w, otherwise $M \cup wr$ is a matching of G. G-w-r has a maximal matching with value k-1.

Case 1. $P_4 \cup (n-2k)K_1 \cup (k-3)K_2$ is a subgraph of G - w - r. By lemma 3, the result holds.

Case 2. $P_4 \cup (n-2k)K_1 \cup (k-3)K_2$ is not a subgraph of G - w - r. Let M' be an maximal matching of G - w - r. Let V' be the vertex set of M', and V'' = V(G - w - r) - V'.

Claim 1. G[V''] is empty. Otherwise, let $e_1 \in E(G[V''])$, then $M' \cup e_1$ is a matching of G - w - r with cardinality k.

Claim 2. $G[V'] \setminus E(M')$ is empty.

Claim 3. $v \in V''$ is adjacent to at most one vertex of V' in G - w - r.

Claim 4. For any edge $e_2 = ij$ of M', if i is adjacent to some vertices of V'', then j must not be adjacent to any vertex of G - w - r except for i.

Claim 5. G - w - r contains no cycle.

Claim 6. g(G) = 4. If $g(G) \ge 5$, then G - w - r can not satisfy the above claims.

So, the components of G - w - r are isolated vertices, P_2 , or stars.

Let qx be an pendant edge of G with pendant vertex x. If q is not a vertex on the cycle, but q is adjacent to another pendant vertex in G, we can choose qx as deleting edge and x as deleting vertex. We know that G - q - x contains a cycle. Then $P_4 \cup (n-2k)K_1 \cup (k-3)K_2$ must be a subgraph of G - q - x. Thus the result hold.

If G contains no such construction, then G must be a graph G'' as shown in figure 4. Since, $P_3 \cup (n - 2k - 1)K_1 \cup (k - 2)K_2$ is a subgraph of G'' - r - z

Figure 4. Graphs G and G''.

(or G'' - r' - z' or G'' - r'' - z''), we can easily obtain that $\lambda_1(S_4^2(n, k)) > \lambda_1(G'')$ by induction.

In the following, we prove that $\lambda_1(S_4^1(n,k)) > \lambda_1(S_4^2(n,k))$.

Let c, d be vertices of $S_4^1(n, k)$ and g, h be vertices of $S_4^2(n, k)$ as shown in figure 2. By lemma 1, we have

$$\begin{split} &\phi(S_4^1(n,k),\lambda) = \lambda \phi(S_4^1(n,k) - d,\lambda) - \phi(S_4^1(n,k) - c - d,\lambda), \\ &\phi(S_4^2(n,k),\lambda) = \lambda \phi(S_4^2(n,k) - g,\lambda) - \phi(S_4^2(n,k) - h - g,\lambda). \end{split}$$

It is obvious that $S_4^1(n,k) - d \cong S_4^2(n,k) - g$, and that $S_4^1(n,k) - c - d$ is a subgraph of $S_4^2(n,k) - g - h$. By lemmas 3 and 4, we can obtain the result.

Theorem 13. $S_4^2(n, k)$ is the graph with the second maximal spectral radius in $U^*(n, k)$.

Proof. By induction on n. Let v be the pendant vertex of G not met by a maximal matching M, u be its adjacent vertex. By lemma 3, we have

$$\begin{split} \phi(S_4^2(n,k),\lambda) &= \lambda \phi(S_4^2(n-1,k),\lambda) - \phi((n-2k-1)K_1 \cup P_3 \cup (k-2)K_2,\lambda) \\ \phi(G,\lambda) &= \lambda \phi(G-v,\lambda) - \phi(G-u-v,\lambda), \end{split}$$

where $G \in U^*(n, k)$ and $G \ncong S_4^1(n, k), S_4^2(n, k)$.

Case 1. $P_3 \cup (n-2k-1)K_1 \cup (k-2)K_2$ is a subgraph of G-u-v. By Lemma 3, the result holds.

Case 2. $P_3 \cup (n-2k-1)K_1 \cup (k-2)K_2$ is not a subgraph of G-u-v. M', V', V'' are defined as in theorem 11. It is obvious that E[V' : V''] and E(G[V']) are empty. We also know that $E(G[V']) \setminus E(M)$ is not empty, otherwise, we can not reconstruction G such that it contains a cycle. So, $P_4 \cup (n-2k)K_1 \cup (k-3)K_2$ is a subgraph of G-u-v.

By lemma 3, for $\lambda > \lambda_1(G) > \lambda_1(G - u - v)$,

$$\phi(P_4 \cup (n-2k)K_1 \cup (k-3)K_2, \lambda) > \phi(G-u-v, \lambda)$$

and since for $\lambda > \lambda_1(G)$

$$\begin{split} &\phi(P_3 \cup (n-2k-1)K_1 \cup (k-2)K_2, \lambda) - \phi(P_4 \cup (n-2k)K_1 \cup (k-3)K_2, k), \lambda) \\ &= \lambda^{n-2k} (\lambda^2 - 2)(\lambda^2 - 1)^{k-2} - \lambda^{n-2k} (\lambda^4 - 3\lambda^2 + 1)(\lambda^2 - 1)^{k-3} \\ &= \lambda^{n-2k} (\lambda^2 - 1)^{k-3} > 0 \end{split}$$

combining the induction hypothesis and lemmas 3 and 5, we can obtain the result. $\hfill \Box$

3. The graph with maximal spread in U(n,k)

In order to describe our results, we need give some definitions and lemmas. Let T(n, k) be the set of all trees on *n* vertices with a maximal matching of cardinality *k*. Let A(n, k), B(n, k), C(n, k) be the trees as shown in figure 5.

Lemma 14 [8]. A(n, k), B(n, k) (n > 2k) are the graphs with the maximal and second maximal spectral radius in T(n, k), respectively; A(2k, k), C(2k, k) are the graphs with the maximal and second maximal spectral radius in T(2k, k), respectively.

Lemma 15 [5]. Let $\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)(\lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G))$ be the eigenvalues of graph G. If G is connected, then

$$|\lambda_i(G)| \leq \lambda_1(G), \quad i = 1, 2, \dots, n.$$

If G is bipartite, then $\lambda_1(G) = -\lambda_n(G)$.

Lemma 16 [14]. $S_3^1(n, k)$ is the graph with the largest spectral radius in U(n, k) except for n = 2k = 6.

Lemma 17. Let $G \in U(n, k)$, g(G) = 3. Then there exists an edge e of $E(C_3)$ such that $\lambda_n(G - e) \leq \lambda_n(G)$.

Figure 5. Graphs A(n, k), B(n, k), and C(n, k).

Proof. Let $X = (x_1, x_2, x_3, ..., x_n)^T$ be the unity eigenvector of $\lambda_n(G)$, where $C_3(G) = v_1v_2v_3$ and x_1, x_2, x_3 correspond to $v_1v_2v_3$, respectively. Then there exist $i, j \ (1 \le i < j \le 3)$ such that $x_ix_j \ge 0$. Otherwise, $x_1x_2 < 0, x_2x_3 < 0, x_3x_1 < 0$, which is impossible. By Rayleigh quotient, we have

$$\lambda_n(G - v_i v_j) \leqslant X^T A(G - v_i v_j) X = X^T A(G) X - 2x_i x_j$$

= $\lambda_n(G) - 2x_i x_j \leqslant \lambda_n(G).$

Lemma 18. Let $G \in U(n, k)$, g(G) = 3, and $G \ncong S_3^1(n, k)$. Then $\lambda_n(S_4^1(n, k)) \leq \lambda_n(G)$ for $k \ge 3$; $\lambda_n(S_4^2(n, k)) \leq \lambda_n(G)$ for k = 2.

Proof. By lemma 4, we can obtain a tree G' from G by deleting an edge of C_3 such that $\lambda_n(G') \leq \lambda_n(G)$.

If $G' \in T(n, k)$, by lemma 3, we have $\lambda_1(A(n, k)) \ge \lambda_1(G')$. Since, A(n, k) is a subgraph of $S_4^1(n, k)$, by lemma 3, we have $\lambda_1(S_4^1(n, k) \ge \lambda_1(A(n, k)))$. Since, $S_4^1(n, k), G'$ are all bipartite, by lemma 15, we have

$$\lambda_n(S_4^1(n,k)) = -\lambda_1(S_4^1(n,k)) \leqslant -\lambda_1(A(n,k)) \leqslant -\lambda_1(G') = \lambda_n(G') \leqslant \lambda_n(G).$$

If $G' \in T(n, k - 1)$, since $G \not\cong S_3^1(n, k)$ we know $G' \not\cong A(n, k - 1)$. Since, B(n, k - 1) is a subgraph of $S_4^1(n, k)$, similarly, we can obtain $\lambda_n(S_4^1(n, k)) \leq \lambda_n(G)$.

If k = 2, we can obtain that $\lambda_1(S_4^2(n, k)) > \lambda_1(B(n, k - 1))$ easily. Similar to the above proof, we can obtain the result.

Lemma 19. $\lambda_n(S_3^1(n,k)) < \lambda_n(S_4^1(n,k)) \ (k \ge 3)$, for $n \ge 18$; $\lambda_n(S_3^1(n,k)) < \lambda_n(S_4^2(n,k)) \ (k=2)$, for $n \ge 12$.

Proof. By lemma 3, we can get

$$\begin{split} &\varphi(S_3^1(n,k),\lambda) = \lambda^{n-2k} (\lambda^2 - 1)^{k-2} [\lambda^4 - (n-k+2)\lambda^2 - 2\lambda + (n-2k+1)] \\ &\varphi(S_4^2(n,k),\lambda) = \lambda^{n-2k} (\lambda^2 - 1)^{k-3} [\lambda^6 - (n-k+3)\lambda^4 + (3n-4k)\lambda^2 - (2n-4k)] \\ &\varphi(S_4^1(n,k),\lambda) = \lambda^{n-2k} (\lambda^2 - 1)^{k-4} [\lambda^8 - (n-k+4)\lambda^6 + (4n-5k+2)\lambda^4 - (4n-7k+3)\lambda^2 + n-2k+1]. \end{split}$$

Let

$$f(x) = x^{4} - (n - k + 4)x^{3} + (4n - 5k + 2)x^{2} - (4n - 7k + 3)x + n - 2k + 1$$

$$h(\lambda) = \lambda^{6} - (n - k + 3)\lambda^{4} + (3n - 4k)\lambda^{2} - (2n - 4k)$$

$$g(\lambda) = \lambda^{4} - (n - k + 2)\lambda^{2} - 2\lambda + (n - 2k + 1).$$

We know that f(0) = n - 2k + 1 > 0, $f(\frac{3-\sqrt{5}}{2}) = -x^3 < 0(x > 0)$, f(1) = k - 3 > 0 $0, f(\frac{3+\sqrt{5}}{2}) = -x^3 < 0(x > 0), g(-\sqrt{n-k+2}) = 2\sqrt{n-k+2} + (n-2k+1) > 0.$ Let $n = 2k + m \ (k \ge 3)$.

If $0 \leq m \leq k$, then

$$g(-\sqrt{n-k+\frac{6}{5}}) = -\frac{1}{5}(4k-m-\frac{1}{5}-10\sqrt{k+m+\frac{6}{5}}) < 0$$

($m \le k \ k \ge 24, \ m \le k-1 \ k \ge 22, \ m \le k-2 \ k \ge 22,$
 $m \le k-3 \ k \ge 20, \ m \le k-4k \ge 19, \ m \le k-5 \ k \ge 17,$
 $m \le k-6 \ k \ge 16, \ m \le k-7 \ k \ge 13, \ m \le k-8 \ k \ge 8)$
 $f(n-k+\frac{6}{5}) = \frac{1}{5}[(k+6m-\frac{44}{5})(5k+5m-9)-195] > 0$
($m \ge 0 \ k \ge 13, \ m \ge 1 \ k \ge 8, \ m \ge 20 \ k \ge 5, \ m \ge 3 \ k \ge 3).$

Combining the Appendix table, We can obtain that $\lambda_n(S_3^1(n,k)) < \sqrt{n-k+\frac{6}{5}} < \infty$ $\lambda_n(S_4^1(n,k)), (n \ge 18).$ If $m \ge k+1$, then

$$g(-\sqrt{n-k+\frac{2}{3}}) = -\frac{1}{3}(\sqrt{k+m+\frac{2}{3}}-3)^2 - k + 3 + \frac{1}{3} < 0(k \ge 4, k = 3 \ m \ge 1)$$
$$f(n-k+\frac{2}{3}) = \frac{1}{3}(k+m+\frac{2}{3})[(3k+3m-7)$$
$$(-k+2m-\frac{20}{3})-75] + m+1 > 0$$
$$(m \ge k+1 \ k \ge 7, m \ge k+2 \ k \ge 6, m \ge k+3 \ k \ge 4,$$
$$m \ge k+5 \ k \ge 3).$$

Combining the Appendix table, we can obtain that $\lambda_n(S_3^1(n,k)) < \sqrt{n-k+\frac{2}{3}}$ $<\lambda_n(S_4^1(n,k)), (n \ge 18).$ If k = 2. $h(x) = x^6 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+5)x^4 + (3m+4)x^4 + (3m+4)x^4$

4) $x^2 + 2m$]. When $m \ge 8$,

$$g(2+m+\frac{1}{2}) = -\frac{1}{2}(\sqrt{2+m+\frac{1}{2}}-2)^2 + \frac{1}{2} < 0$$

$$\lambda_n(S_4^2(n,2)) = -\sqrt{\frac{(m+4)+\sqrt{m^2+16}}{2}} > -\sqrt{m+\frac{5}{2}}.$$

Thus, we have $\lambda_n(S_3^1(n,2)) < -\sqrt{m+\frac{5}{2}} < \lambda_n(S_4^2(n,2)).$

	пррената шоге	
n = 2k + m	$\lambda_n(S_4^1(n,k))$	$\lambda_n(S_3^1(n,k))$
k = 6 $m = 8765$	3.8256 3.6997 3.5705 3.4380	3.8570 3.7266 3.5917 3.4521
k = 7 $m = 7654$	3.8347 3.7097 3.5815 3.4563	3.8662 3.7368 3.6032 3.4650
m = 3	3.3160	3.3217
k = 8 $m = 8765$	4.0834 3.9649 3.8437 3.7195	4.1213 4.0000 3.8753 3.7468
$m = 4 \ 3 \ 2 \ 1$	3.5923 3.4623 3.3295 3.1940	3.6144 3.4777 3.3363 3.1901
k = 9 $m = 98765$	4.3187 4.2060 4.0909 3.9730 3.8525	4.3607 4.2462 4.1287 4.0082 3.8843
$m = 4 \ 3 \ 2 \ 1$	3.7292 3.6031 3.4742 3.3426	3.7568 3.6255 3.4901 3.3504
$k = 10 \ m = 10 \ 9 \ 8 \ 7 \ 6$	4.7560 4.6529 4.5479 4.4407 4.3313	$4.5871 \ 4.4783 \ 4.3669 \ 4.2529 \ 4.1361$
$m = 5 \ 4 \ 3 \ 2$	4.2196 4.1055 3.9890 3.8694	4.6162 3.8931 3.7666 3.6364
$k = 11 \ m = 11 \ 10 \ 9 \ 8 \ 7$	4.7560 4.6529 4.5479 4.4407 4.3313	$4.8024\ 4.6985\ 4.5924\ 4.4840\ 4.3731$
m = 6543	4.2196 4.1055 3.9890 3.8694	4.2597 4.1434 4.0242 3.9019
$k = 12 \ m = 12 \ 11 \ 10 \ 9 \ 8$	4.9607 4.8616 4.7607 4.6580 4.5532	5.0083 5.9086 4.8071 4.7035 4.5977
$m = 7 \ 6 \ 5 \ 4$	4.4464 4.3375 4.2263 4.1128	4.4897 4.3793 4.2663 4.1507
$k = 13 \ m = 15 \ 14 \ 13 \ 12$	5.1574 5.0619 4.9648 4.8660	5.2057 5.1099 5.0123 4.9130
m = 11 10 9 8	4.7634 4.6630 4.5586 4.4522	4.8117 4.7084 4.6030 4.4954
$k = 14 \ m = 14 \ 13 \ 12 \ 11$	5.3471 5.2548 5.1611 5.0658	5.3958 5.3033 5.2093 5.1137
$m = 10 \ 9 \ 8 \ 7$	4.9690 4.8704 4.7701 4.6679	5.0164 4.9173 4.8163 4.7133
k = 15 m = 15 14 13 12	5.5303 5.4410 5.3504 5.2583	5.5792 5.4898 5.3990 5.3067
m = 11 10 9 8	5.1648 5.0697 4.9731 4.8748	5.2129 5.1175 5.0204 4.9216
$k = 16 \ m = 16 \ 15 \ 14 \ 13$	5.7078 5.6211 5.5333 5.4442	5.7567 5.6700 5.8214 5.4929
$m = 12 \ 11 \ 10$	5.3337 5.2618 5.1685	5.4023 5.3102 5.2165
$k = 17 \ m = 17 \ 16 \ 15 \ 14$	5.8799 5.7958 5.7105 5.6240	5.9288 5.8447 5.7594 5.6729
$m = 13 \ 12$	5.5363 5.4473	5.5851 5.4960
$k = 18 \ m = 18 \ 17 \ 16 \ 15$	6.0472 5.9653 5.8824 5.7984	6.0960 6.0141 5.9312 5.8472
$m = 14 \ 13$	5.7132 5.6268	5.7620 5.6757
$k = 19 \ m = 19 \ 18 \ 17 \ 16 \ 15$	6.2169 6.1303 6.0495 5.9677 5.8849	$6.2586 \ 6.1789 \ 6.0982 \ 6.0164 \ 5.9337$
$k = 20 \ m = 20 \ 19 \ 18 \ 17 \ 16$	6.3688 6.2909 6.2122 6.1325 6.0517	$6.4170 \ 6.3393 \ 6.2607 \ 6.1810 \ 6.1004$
$k = 21 \ m = 21 \ 20 \ 19 \ 18$	6.524 6.4476 6.3707 6.2930	6.5716 6.4957 6.4190 6.3413
$k = 22 \ m = 22 \ 21 \ 20$	6.6750 6.6006 6.5255	6.7226 6.6484 6.5734
k = 23 m = 23	6.8230	6.8703

Appendix table

Theorem 20. $S_3^1(n,k)$ $(n \ge 18 k \ge 2)$ is the graph with the largest spread in U(n,k).

Proof. Let $G \in U(n, k)$. If g(G) = 3, by lemmas 16 and 18, we can obtain $s(S_3^1(n, k)) > s(G)$. If $g(G) \ge 4$, by lemmas 12, 15, 16, and 19, we can obtain $s(S_3^1(n, k)) > s(S_4^1(n, k)) \ge s(G)$ for $k \ge 3$ and $s(S_3^1(n, k)) > s(S_4^2(n, k)) \ge s(G)$ for k = 2.

Remark. Theorem 20 is still true except for a few graphs (see the Appendix table) with $n \leq 17$, for example, $S_4^1(15, 5)$. For convenience, we just consider the case for $n \geq 18$.

Figure 6. Graphs $S_3^1(n,k)$, $S_3^1(n,k-1)$ and vertices a, b, u, v.

Lemma 21. $s(S_3^1(n,k)) < s(S_3^1(n,k-1)) \ (n \ge 18 \ k \ge 3).$

Proof. We first prove that $\lambda_1(S_3^1(n,k)) < \lambda_1(S_3^1(n,k-1))$. We can delete the pendant vertices v, b of $S_3^1(n, k-1), S_3^1(n, k)$, respectively (see figure 6).

Similar to the proof of lemma 10, we can obtain the result. Since, x, y are symmetrical, by lemma 17, we have $\lambda_n(S_3^1(n,k) - xy) \leq \lambda_n(S_3^1(n,k))$. Since $\lambda_n(S_3^1(n,k) - xy)$ is a subgraph of $S_4^2(n,k-1)$, then $\lambda_n(S_3^1(n,k) - xy) > \lambda_n(S_4^2(n,k-1))$. By lemmas 11 and 19, we have $\lambda_n(S_3^1(n,k-1)) < \lambda_n(S_3^1(n,k))$. Thus $s(S_3^1(n,k)) < s(S_3^1(n,k-1))$ ($k \geq 3$).

Using theorem 20 and lemma 21, it is not difficult to obtain the following theorem.

Theorem 22. $S_3^1(n, 2)$ $(n \ge 18)$ is the unique graph with the largest spread in the class of all unicyclic graphs with *n* vertices.

References

- A. Chang and F. Tian, On the spectral radius of unicyclic graphs with perfect matchings, Linear Algebra Appl. 370 (2003) 237–250.
- [2] D. Cvetkoić, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications (Academic Press, New York, 1980).
- [3] D. Cvetkoić and M. Petrić, A table of connected graphs on six vertices, Discrete Math. 50 (1984) 37–49.
- [4] D. Cvetkoić and P. Rowlinson, Spectra of unicyclic graphs, Graph Combin. 3 (1987) 7–23.
- [5] D. Cvetkoić, P. Rowlinson and S. Simić, *Eigenspaces of Graphs* (Cambridge Univ, Cambridge 1997).
- [6] D. Gergory, D. Hershkowitz and S. Kirkland, The spread of the spectrum of a graph, Linear Algebra Appl. 332–334 (2001) 23–35.
- [7] J. Guo and S. Tan, On the spectral radius of trees, Linear Algebra Appl. 329 (2001) 1-8.
- [8] Y. Hou and J. Li, Bounds on the largest eigenvalues of trees with a given size of matching, Linear Algebra Appl. 342 (2002) 203–217.
- [9] C. Johnson, R. Kumar and H. Wolkowicz, Lower bounds for the spread of a matrix, Linear Algebra Appl. 71 (1985) 161–173.

- [10] Q. Li and K. Feng, On the largest eigenvalue of graphs, Acta Math. Appl. Sinica 2 (1979) 167– 175.
- [11] L. Mirsky, The spread of a matrix, Mathematika 3 (1956) 127-130.
- [12] M. Petrović, On graphs whose spectral spread does not exceed 4, Publ. Inst. Math. (Beograd) 34 (48) (1983) 169–174.
- [13] S. Simić, On the largest eigenvalue of unicyclic graphs, Publ. Inst. Math. (Beograd) 42 (56) (1987) 13–19.
- [14] A. Yu, F. Tian, On the spectral radius of unicyclic graphs, MATCH commun. Math. Comput. Chem. 51 (2004) 97–109.